
Developing a Virtual Reality Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Dominic Baartz∗ Hannes Hergeth† Adrian Wagner‡ Jan Marewski§ Jascha Wedowski¶

Figure 1: The enemy approaching our player

Abstract

RiftBlade is concepted as a first person sword fighting game, de-
signed to be experienced with the Occulus Rift virtual reality head-
set. It features single combat against a fierce AI opponent. (cf.
Figure 1).

Keywords: game programming, virtual reality, swordfighting, first
person

1 Rendering Pipeline

We tried to achieve a high graphic fidelity while retaining accept-
able performance to allow for an enjoyable experience when using
the Oculus Rift headset. The rendering pipeline underwent quit a
lot of heavy refactoring and even rewriting, the final iteration how-
ever was designed do support the following features:

∗dominic.baartz@rwth-aachen.de
†hannes.hergeth@rwth-aachen.de
‡adrian.wagner@rwth-aachen.de
§jan.marewski@rwth-aachen.de
¶jascha.wedowski@rwth-aachen.de

• HDR rendering

• Gamma Correct Rendering

• Screen Space Ambient Occlusion (SSAO)

• Bloom

• Oculus Rift support

In the following subsections we will shortly detail the single imple-
mentations

HDR rendering and Gamma Correct Rendering

This part contains of two passes: First, the lighting attributes of
all geometry are rendered into the Geometry Buffer textures. As
we now reconstruct positions from depth values, we only use two
texture attachements now.
In the next pass, all lights are rendered as described above. It is to
note that we did not implement a stencil buffer pre-pass for the point
lights, which results in poorer performance with high numbers of
active lights, but as shadow mapping is the actual bottleneck when it
comes to numbers of lights in our implementation, this optimization
is not really missed. The lights are rendered into an offscreen buffer,

the HDR buffer. It contains a single GL RGB16F texture, which is
required to ensure we store our values in linear space. We do feature
volumetric lights, however for reasons we did not manage to locate
in time, only a single volumetric light can be active at one time.
In the game, we use this for the glowing eyes/helmet effect of the
enemy character. The effect is achieved using a modified version
of the technique described in [Sanglard 2008]: We render the light
volume as bright sphere, using the depthbuffer from the geometry
pass (this way, we do not have to render occluders again, which is
the main modification made to the technique). The resulting image
is then processed with a radial blur filter and additively blended into
the HDR buffer.

SSAO

This part actually takes place before the light pass, but after the ge-
ometry pass. Using the depthbuffer and the normal texture from the
GBuffer, we calculate ambient occlusion values for every fragment
using the technique described in [Chapman 2011]. All calculations
are done in a buffer with only a quarter of the screen resolution, to
enhance the performance. The resulting texture is then used as fac-
tor in the ambient lighting term. However, this part is disabled in
the final version, as the performance impact was still too high while
the quality suffered heavily from the downsampling.

Bloom

Bloom is implemented straightforward: First, the HDR image is
downsampled four times, then a highpass filter is performed on the
image to isolate areas with a average luminance value higher than
1.0. The result of the highpass is then blurred using a simple two
pass gaussian blur filter, and additively blended onto the HDR im-
age.

Oculus Rift Support

When the VR mode is enabled in the render settings, all of the above
is performed twice, each time with the corresponding view and pro-
jection matrices for the left and the right eye. We then use the func-
tions provided by ACGL to render both results into the well-known
shape required for the Oculus Rift headset.

2 Shadow Mapping

Shadow mapping for point lights was implemented using cube
maps. Though first an approach using using two paraboloid maps
was tried and abandoned after facing problems inheritly in this
method. For the cube map we render the scene six times from he
perspective of the camera using an optimized version of the geom-
etry. Later this cube map is sampled to judge if a position is visible
from the light. Sadly only standard bilinearly filtered shadow maps
are used. Variance shadow maps were implemented but it was chal-
lenging to blur the shadow cube map after creating it and without it
simple shadow maps are visually more pleasing.

3 Blender export and file format

As the teams focus was on dynamic sword combat it was manda-
tory to support skeletal animation. To achieve this task a file format
was needed to export this kind of information from blender. Due to
the lack of freely available ones we decided to create our own. It
is split up in a mesh file which contains information on submeshes,
geometric information and materials. This file on its own can be
used for static meshes. The second file contains information neces-
sary for skeletal animation. This is a bone hierarchy aswell as per

frame information for the bones.

The blender script is written in python and uses the blender api
to access blender’s data. The file format itself is binary and was
deliberately kept simple.

The one and only problem during this task was the lack of blender
documentation, or the lack of precise and clear information in the
documentation. Due to a redesign a few years ago it was also quite
difficult to use help on the internet so much had to be done by trial
and error. Another slight difficulty was the obscure coordinate sys-
tem blender uses.

4 Skeletal Animation

The animation file itself only contains per frame information for the
bone, this is the rotation and orientation of the bone relative to it’s
parent. During the game this data is being used to generate absolute
matrices for each bone which will be sent to the shader. This design
enables us to let some bones be controlled by animation files and
others by means of input devices like a Wii controller.

5 Inverse Kinematics

During the game we wanted the player to hold one input controller
in his hand and be able to controller the characters arm with it.
In theory the input device should return position and rotation data
which then can be used to manipulate specific bones. While this
step may seem easy it is far from that. The difficuly is that only the
position and orientation of the playrs hand, from now on dubbed
”end effector” are known, all intermediate arm bones have to be
positioned accordingly. This problem is known as inverse kinemat-
ics and mainly focused on in robotics. It is possible to seperate
two approaches, the first tries to analitcly solve equations describ-
ing the problem, the second is a numerical approach which tries to
iterativly find the locally best solution. We chose the second one as
it seemed to be the one used more widley. In general the approach
works like this

1. Determine the change in the end effector, ie. the amount
which it has to be moved to reach the desired position, this
is called ~e

2. A matrix J is calculated which describes the change in end ef-
fector position when rotating each bone around an angle ∆θi.

3. Now the equation ~e = J∆θ is solved for ∆θ. J is very likley
not of square form so there may be multiple or no solutions,
the one with min |∆θ| is chosen.

4. Solving this equation is possible using numerous methods,
the fastest and unprecise is called Jacobian Transpose and
sets ∆θ = αJT~e for some constant α. Better methods in-
clude using the pseudoinverse J† to set ∆θ = J†~e. Damped
least squares is an even more elaborate method which uses the
Levenberg-Marquardt algorithm to solve for ∆θ.

5. ∆θ is used to orientate each bone. Due to the fact that J is
only a linear approximation of the problem the result might
not be perfect, though in practice this was not a relevant prob-
lem.

All of these methods are implemented using the Eigen linear alge-
bra library. Sadly this approach results in unsatisfying results due
to the property that it is not defined which ∆θ is chosen. Visu-
ally this generates sudden changes in bone position and orientation,
which mathematically are valid but visually unpleasing. Another
problem is that up to now no information on bone constraints is

used resulting in bone positions which are not possible for the hu-
man anatomy. While it is possible to implement such constraints
we decided to abandon the inverse kinematics approach altogether
due to the problems associated.

6 Game Object system

We are using a component based game object system in the game.
Every entity in the game is a game object. The game object itself
doesn’t implement any game logic but is rather aggregated from
different component objects, those implement the logic that should
drive the game object. components are based on events which are
called by the game object (e.g. ”Update”). components and game
object can be disabled or destroyed. If the game object is disabled,
every attached component will be disabled aswell. If a component
is disabled the ”Disable” event will be called. After that no events
will be called for that component until it is enabled again. All game
objects are registered in the scene object. The scene is updated
every frame and forwards the ”Update” event to the game objects
which will then forward the event to its components.

The problem with this approach is that everyone directly adressing
a component or game object which has been destroyed will crash
the game. To prevent this we use templated sets that keep track of
all valid pointers for the given type.

7 Physics Engine Implementation

7.1 General Implementation

We are using the Bulletphysics library for physics simulation and
collision detection in our engine. The physic simulation is managed
by our PhysicsWorld class, which handles initilization of a Bullet
collisionworld, adding and removing collisionobjects and the clean-
up of said world and any collisionobjects in it. Bullet’s rigidbody
dynamics provides us with three different kinds of rigidBodies -
static, dynamic and kinematic. All of these rigidbodies have to be
created with a motionstate, a class which contains the bodies cur-
rent transform. Opposed to our custom transform component which
handles position, rotation and scale of an object, bullet transforms
only consist of a position and a rotation. We therefore created our
own motionstate which functions as a wrapper, so both transforms
can write in or read from the other without complications.

For our final scene we found uses for all three kinds of rigidbodies.

Static rigidBodies will never move. They simply exist to collide
with other objects. Naturally we choose this type to create the col-
lisionobject of our level, the sponza palace setting. However the
highly-detailed sponza model proofed to be to performance reduc-
ing, so we created a seperate simple mesh that closely resembles
our actual rendered sponza scene thereby highly improving perfor-
mance.

While we don’t have any random clutter in our scene to interact
with we needed dynamic rigidbodies for our charactercontrollers.
This way Bullet would handle all the collisions and any movement
impairing effects that came with it. This allowed us to create a
charactercontroller that can simple be controlled by applying forces
to its corresponding rigidbody.

Lastly kinematic objects are used for our so called collider-
component, which handles the hitboxes of an object.

7.2 Collider and hitBoxes

Since being able to hit the enemy’s bodyparts was an important
aspect of our gameplay we created a component that manages dif-
ferent hitboxes. The component uses a kinematic rigidbody with a
compound collisionshape. This compoundshape consists of several
child collisionshapes, who are then positioned between a bone and
the bones parent. Each childshape has a userpointer, which points
to a hitbox structure of the corresponding bodypart.
Since our animation used a lot more bones than our collider needed
(for instance all the bones in the hand of our character), we choose
to let the hitboxes themselves manage their positioning in each up-
date step of our scene, since each hitbox knew their corresponding
bone from the creation process anyway. The hitboxes also contain a
boolean value, if this value is true and the gameobject has a health-
component damage will be applied.

7.3 Sword Controller

While bullet can provide us with some simple forms of collision
detection between two rigidbodies, like different collision callbacks
or iterating over all contactmanifolds after a simulation step these
approches didn’t provide the control we needed to correctly know
when to apply damage or not. Because of this we used raycasts
for all the collision detection of our swordblade. This is done by
doing several raycast outwards from the inside of the swordblade.
If one of these custom raycasts hits a collider, it stores the hitbox
structure, which than allows for simple access of the boolean value
of the structure.
To prevent damage bein applied each frame, while the blade is still
inside a hitbox, we then do two raycast alongside the bladeedges
from the hilt to the tip and wait for no collision response. This
approch gives us some control over the damage being apply for
simple strikes at the enemy, but unfortunatly still fails if the ray
starts inside a collisionshape.

8 The input system

As one of the main goals for the game was to be able to be played
on as many setups as possible, we implemented our own dynamic
system to handle input from analog and digital devices. We also
had to consider that not everyone would want to play with the same
button layout.

That is the reason we developed a fully configurable input system
with button mapping and support for analog to digital input conver-
sion and vise versa.

The list of devices supported by our game include keyboard, mouse,
oculus rift, several gamepad-types and the wii-controller (addition-
ally wii-controller addons like nunchuck and wii-motion-plus). Ev-
ery device has it’s own set of buttons and axes that are available for
the game, including every sensor that is needed.

The problems we had to face in our system were mostly connected
to the library for the wii-controller (called wiiuse), as it is not in
active development anymore and lacks the features needed by the
new versions of the Nintendo hardware. However these problems
could be overcome by gathering information on several homebrew
websites.

9 Compilation

Our teams setups consistet of multiple windows maschines, one
linux and one mac. Our game had to compile on each system as
easy and straightforward as possible. We used cmake to overcome

the problems of system independent build scripts, but ran into prob-
lems with bugs in cmake on mac aswell as problems with visual stu-
dio on windows (which tends to rename libraries and subsequently
break dependencies).

The mac bug could be fixed adding multiple compiler switches
manually to the cmake file, but for windows we added a README
with the information needed to make visual studio work as ex-
pected.

10 ATI vs NVIDIA

One of the greatest problems our team had to face was the sup-
port of the different types of graphics cards on the market. As our
team members used Nvidia, ATI and Intel based graphics cards and
chipsets and our game had to run on each and every one of these,
we were introduced into the strict standard following ATI, the rather
forgiving Nvidia as well as the lacking Intel implementations of
OpenGL.

This problem, like every other problem that was setup and or plat-
form dependend, was solved in testing sessions the whole team at-
tended via internet. This way we got to know the framebuffer re-
strictions on Intel chipsets and that some graphics cards don’t even
cast int to float automatically.

References

CHAPMAN, J., 2011. Ssao tutorial. http://john-chapman-
graphics.blogspot.de/2013/01/ssao-tutorial.html/. [Online; ac-
cessed 06-August-2014].

June, 2010. Inkscape. http://www.inkscape.org.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

SANGLARD, F., 2008. Light scattering with opengl.
http://fabiensanglard.net/lightScattering/. [Online; accessed
06-August-2014].

