
Developing a Jump and Fly Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Jan Dreier∗ Denis Golovin† Moritz Ibing‡ Simon Grätzer§ Jan Garcia¶

Figure 1: Screenshot of the gameplay

Abstract

TubeRacer is an interactive 3D action game. The player flies in a
spaceship along a tube that runs through space. On the tube are var-
ious objects you can interact with (speed-boosts, items, obstacles).
Goal of the game is to survive as long as possible.(cf. Figure 1)

Keywords: game programming, TubeRacer

1 Gameplay

In the beginning the player has a lifetime of 30 seconds. The life-
time decreases constantly, when it hits 0 the game is over. The
player can collect clock items to increase his lifetime. However
various obstacles are placed upon the tube like boxes and spheres.
Hitting obstacles decreases lifetime. Furthermore along the track
there are speedboosts which accelerate the spaceship for a limited
period of time and also prevent the spaceship from colliding with
the obstacles. The game is over when the lifetime reaches zero sec-
onds. The player’s score is measured by the distance he traveled.
With each round the player completes the difficulty is increased, i.e.
more obstacles are placed on the tube.

2 Graphic Effects

2.1 Lighting

For lighting we use a Phong lighting model with a global directional
light source. In this lighting model, light is described as the sum of

∗jan.dreier@rwth-aachen.de
†denis.golovin@rwth-aachen.de
‡moritz.ibing@rwth-aachen.de
§simon.graetzer@rwth-aachen.de
¶jan.garcia@rwth-aachen.de

three different parts. An ambivalent part, which is background light,
that has the same intensity everywhere. A diffuse part, which lights
the surfaces directly facing the sun more than the ones diagonal to
it. This part is calculated by comparing the surface normal with
the light direction A specular part or reflection, depending on the
viewers position.

2.2 Shadow Mapping

We implemented Shadow Mapping by rendering the depth buffer
from the position of our sun into a texture, this way we would get
the distance of the nearest object to the sun. By comparing the dis-
tance from every point, with the one from the depth buffer, we could
decide whether an point would be seen by the sun or not (and thus
be shadowed by something). However as we rendered the whole
scene into only one picture, we would not get a high resolution of
our shadow. To solve this problem, we rendered the near surround-
ings of the current camera-position into a second buffer This way
we would have a high resolution for the shadow near the camera,
and a lower one for the surrounding, where the resolution is not that
important

2.3 Normal Mapping

We made massive use of normal mapping to give our game ob-
jects more structure. Normal mapping needs three vectors to de-
fine a vector space and thus a transformation of the normals saved
in a texture to the normal of each fragment in world-space coor-
dinates. The first vector is the normal of each vertex as saved in
the VAO. We generate the second and third vector (called tangent
and bitangent) in the geometry-shader from the UV-coordinates of
each vertex. The normal-textures are generated in blender from the
color-textures.



2.4 Bloom

This post-processing effect first applies a bright-pass filter upon the
image. Then a bidirectional Gaussian blur is applied to the filtered
image as well as two smaller versions of it. The three blurred im-
ages are stretched to the original size, merged together and then
added to the original image. The images were resized before blur-
ring to simulate big Gaussian-kernels in an efficient way.

2.5 Motion Blur

For implementing the motion blur, we compute the velocity for each
vertex, by comparing its current position, with its position in pre-
vious frame. Then each fragment is blurred along its vector. We
also apply a simple depth test to prevent objects in the back from
blurring into objects before them.

2.6 Font Rendering

2.7 Particle System

Our particle system is run by emitters. Emitters have a lifetime and
emit particles until they die. The trail behind the spaceship is gen-
erated by a long-living emitter whilst the emitter for each explosion
only lives for a very short period. The emitter emits particles which
are then passed to the shader-program. The geometry-shader turns
each particle’s position into a billboard facing the camera. The par-
ticles size and texture are derived from a type-attribute set by the
emitter. The particle is drawn additive with alpha channel.

2.8 Environment Rendering

The glass-like orbs and reflective objects in the game are rendered
using environment mapping. Environment mapping is done by first
choosing an origin to render the reflections from, e.g. the center
of a reflective object. Then we render the scene as seen from the
origin in all directions: up, down, left, right, top, bottom.

3 Physics

Physics play a main role in the gameplay of our game. For exam-
ple all the obstacles are attracted by the gravitation of the tube and
interact physically correct with each other and the space ship. To
do the physics simulation we used the bullet physics library. For
the physics simulation to be more effective, we use simplified colli-
sion meshes of box-obstacles and the space ship. For the objects to
fall towards the tube, we calculate the closest point on the tube and
apply gravity in that direction.

4 Audio

Our audio support is facilitated by OpenAL. It is used to play menu
music, the game music and ingame sound effects. We also use Ope-
nAL to simulate 3D sounds when the space ship collides with an
obstacle.

5 Images

Phong lightning

normal mapping

shadow mapping

bloom

motionblur

Figure 2: Graphics effects used in the game.


