Developing a Whale Shooter: Terminator Land

Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Arun Ravi* Ercan Yalvac'

Hongrui Deng?

Sergei Krestianskov$ Weiyue Wang ¥

Figure 1: A screenshot of Terminator Land.

Abstract

This paper briefly describes the development of a whale/first-person
shooter called Terminator Land (see Figure 1). The idea of the
game was basically to create something close to a First Person
Shooter that would include the fun of shooting, the challenge of
aggressive enemies and the excitement of controller free gameplay.
This report very briefly describes the development process as well
as the graphical methodologies implemented in the game.

Keywords: game programming, whale shooter

1 Introduction

We began with the idea that our character would be stranded on an
island filled with undead creatures and the only way out would be
to shoot through them. The first choice for the game type was a first
person shooter to offer the player full control over his/her charac-
ters movements. After some discussion however, we decided that a
whale shooter would be appropriate form for the game. This would
let us restrict the amount of terrain to be generated. Additionally,
we were also keen on using the Kinect from Microsoft as a con-
troller for our game. Our initial categorization of the primary work
packages for the game was as follows:

o Content creation

*arun.ravi@rwth-aachen.de
Tercan.yalvac@rwth-aachen.de
Thongrui.deng @rwth-aachen.de
8sergei.krestianskov @rwth-aachen.de
Yweiyue.wang @rwth-aachen.de

e Physical interactions
o Graphical effects

o [nterface design

o Game control

Subtasks were then created in these sections and divided among our
team for development. A brief descriptions of the subtasks com-
pleted under each category is the sections ahead.

2 Content Creation

e Terrain generation * The terrain in our game is represented
as a set of several islands and a plain bottom. To create a
mesh, Blender together with a height-map picture and a high-
resolution texture were used. The heightmap and the texture
were generated manually with GIMP.

o Water Generation * In the beginning, water mesh was created
in Blender and waves were made using sin-function in a vertex
shader. Later on, a mesh of water was manually created to
allow for more realistic graphical (reflection and refraction)
and physical (waves) effects.

o Skydome * The idea was to basically create a giant sphere
along with a suitable sky texture and place it in the envi-
ronment so that it appears to cover the open area above the
ground. The sphere was created in Blender and the normals
inverted so that it faces inward towards the ground.

e Grass ® Each basic unit off grass was implemented as a bush
consisting of six billboards. Two billboards are combined to



create a double face quad and three such pairs are arranged at
relative angles of 120 degrees.

Trees * The tree model was created by using billboard tech-
niques. Each tree contains 6 slices of billboard, each of which
was created by using Blender. Moreover, the textures are ran-
domly attached to each tree, so that the whole layout of trees
will be more natural, and appear differently with new launch
of the game. Complete 3D-models of trees were also used,
but too much geometry significantly slowed down the game
speed.

Enemies ' The basic model of the enemy is a Terminator T-
800 mesh which was obtained from the internet along with
a texture. The Artificial Intelligence for the enemy was pro-
grammed only so that the enemy would simply walk towards
the player and periodically fire a Shearing Death Ray from its
eyes.

The Minigun ' The model was hand-crafted from scratch so as
to allow the barrels to rotate to give the player a realistic feel
of holding a minigun. The weapon has basically been textured
with uniform colors giving it a very diffuse feel.

Physical Interaction

Collision detection for ammunition ' The idea here was to do
a sphere-cylinder collision detection. The enemy was approx-
imated by a cylinder and the ammunition by a sphere. This
was used to trigger the explosion effect.

Waves on water * The water mesh was created manually and it
was possible to manipulate vertex positions, so that the height
field fluids equation could be applied. Waves are generated by
regularly applying some force at some positions on the water
grid.

Movement of grass > In order to do a realistic animation, the
trigonometric functions (sine and cosine) were utilized. For
this calculation we also need to consider the position to be
changed and the current time. In this project only the upper
parts of the grass objects were waved. coordinates.

4 Graphical Effects

Real-time glow ' The idea was to impart glow to only certain
objects in the world. Ultimately, this has been limited to am-
munition pellets shot from the players weapon, the enemys
eyes and the enemys attacks. The idea was to just apply a
gaussian blur to glow sources and append that to the original
image [James and O’Rorke 2007].

Muzzle flash ' The idea here was just to give a more realistic
feel of firing ammunition from the weapon. This was imple-
mented using a simple quad billboard and dynamic switching
between textures on the billboard to give the effect of firing
(see Figure 2).

Explosion * This effect was achieved with a billboard created
in a geometry shader along with multiple textures to give the
effect of an animated explosion (see Figure 2).

Atmospheric Fog * This effect was achieved by simply blend-
ing pixel colors with a gray color value depending on the
depth value at that pixel. Additionally, the fog was pro-
grammed to vary exponentially with changing depth to give
a more realistic effect.

5

6

Figure 2: Example of muzzle flash and explosion.

e Rain * This effect was implemented using a geometry shader
that created minute camera aligned triangles based on a grid of
points externally created. The motion of rain was controlled
by velocity dependent displacement of points in the vertex
shader. Additionally the points are randomly distributed and
located only within the field of view.

e Reflections on water * Deferred shading was used to imple-
ment this effect. First, the terrain mesh was reflected against
water plane and rendered to a separate FBO. Then, when ren-
dering water, the texture of that FBO was used to look up
texels. We were able to produce perturbation on the water
surface by using normals from the water mesh to shift texel
coordinates. The normal map of the water mesh is dynami-
cally updated every frame [Sousa 2005].

Interface Design

e Heads up display ' This consists of a simple green health bar
at the bottom left of the screen and a kinect indicator icon on
top of it. The kinect indicator icon was kept just to inform the
player of his/her tracking status when playing with the kinect.

Game Control

o Natural interaction ' * > When developing the game, we were
very keen on bringing the element of the natural interaction
into it. We have done this by integrating the Kinect with
our game using the OpenNI and NITE packages. With this
we present the player with a completely controller free ap-
proach towards gaming. We obtained basic code from the
NITE examples and the OpenFlipper framework and added
game-specific functionality on top of it.

e Character Movement > Since this is a whale shooter game, and
we didnt set any storyline, so the path to move is initialized
as a large circle around a mountain. However, player can also
change the moving model from fixed path to freely moving by
pressing certain button, vice versa.

References

JAMES, G., AND O’RORKE, J., 2007. Real-time glow.

SousA, T., 2005. Generic refraction simulation.

"Done by Arun
2Done by Ercan
3Done by Hongrui
“Done by Sergei
5Done by Weiyue



