Developing Shattered Star
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

David Erler* Joachim Herbert

Eugen Seljutin? Leon Staab’

Figure 1: A view of the main level, as seen while playing.

Abstract

With the current trend in stereoscopic games, our task was to create
a 3D-game for the Apple iPhone in combination with a Dive VR
device. We chose to develop a game which, unlike other stereo-
scopic games which try to shock the player with horror elements or
quick action loaded rides, relaxes him. Warm colors and a special
low-poly look, combined with lovely level design within a natu-
ral scene, provide the ideal conditions to take a break from a hard
working day.

Keywords: game programming, dive into mobile vr/ar games

1 Gameplay, Design and Setting

Since the target group of our game is not based on experienced play-
ers but on people who want to try out virtual reality, our gameplay
is focused on simple mechanics. The most important interaction
with the user is camera control by moving the head. This natural
mapping does not require teaching. The other mechanic is actively
looking at objects. But even without it, the game is already con-
sumable and gives the player a simple VR experience without the
pressure to fulfill objectives and learn mechanics. The graphic style
is simple and symbolic and not cluttered with details that would
draw away the players attention. There are no text elements at all
and no HUD elements are floating in mid air.

*david.erler@rwth-aachen.de
Tjoachim.herber @rwth-aachen.de
feugen.seljutin@rwth-aachen.de
§leon.staab @rwth-aachen.de

2 10S Development

Since no member of our group had previous experience with the
target platform and we didn’t always have access to a device, we
chose to introduce an abstraction layer for the initialization process
and player input. The usage of apple-specific APIs was generally
avoided. The game was developed on multiple platforms, including
0OSX, Windows, Linux, with frequent intermediate iPhone builds to
check compatibility.

3 Content Pipeline

As our main tool for content creation we chose Blender. A level can
be modeled, textured and designed all inside a single Blender scene.
Due to the static nature of the levels we chose to use the Blender
renderer to bake ambient occlusion maps to add definition to the
geometry. Colors are solely set using vertex colors. For a robust
transfer of the content data into our engine, we decided to include
the Assimp library as an importer. The importer would transfer the
scene graph, meshes and materials to our engine, preserving the re-
lations relevant to our systems. Using reserved identifiers, our level
loading mechanism would tag certain nodes as being objects us-
ing a component of a specific system (e.g. navigation nodes, light
spheres). With this method we skipped the need for a dedicated
level editor and a custom level file format, promoting rapid devel-
opment.

4 Entity Component Architecture

Our very first prototype used an ad-hoc architecture for the pur-
pose of a quick working concept. We quickly realized an isolated
set of systems would offer better flexibility and simplicity of de-
velopment. As such, a simple entity component system was imple-
mented. Once per frame, all systems are updated and allowed to
interact on their components. Every component system could be



Figure 2: A light-sphere before (left) and after (right) it has been
collected.

developed in an isolated and testable environment.

4.1 Event System

The event system is used for communication between systems. It
provides event-channels for different types of events. The event-
channels store events in a front and a back buffer, which are
switched once per frame. This results in a delay of one frame for
delivering an event, with isn’t noticeable in our game, due to its
slow pacing. The benefit of this approach however is, that it avoids
blocking the game due to infinite event chains.

4.2 Selection System

The selection system notifies related systems about targets, which
were selected based on the direction of the viewer. While the user
is looking at an object, its selection score increases. The incremen-
tation rate is controlled by the angle between the relative position
of the object and the viewing direction. This prevents accidental
selections.

4.3 Navigation System

The navigation system operates on a tree structure of nodes. Upon
initialization, bézier curves are generated, which define the path
of the camera. During navigation, the system updates the position
of the camera and detects branching points. When approaching a
branching point, the movement is slowed down up to a stop, or the
user selects one of the possible branches.

5 Graphics

We decided to use a deferred pipeline, because of the high num-
ber of light-spheres, which act as point lights. Our deferred shader
writes all information required to combine the resulting image in
a G-buffer, which includes the color, normal, ambient occlusion,
world position and depth of each pixel. This information is used to
draw the ambient lit world in the first step in a full screen pass, and
later adding lights additively in a second pass.

5.1 Light Spheres

The rendering of the light-spheres is done in two steps. In a first
step the lighting of the scene geometry, due to the light-spheres, is
calculated and the geometry of the light-spheres is then rendered in
a second step.

The progress of collecting the light-sphere determines the color,
through the use of a 2D-Texture. The pattern in the color of the
light-spheres, as seen in figure 2, is generated based on a noise-
value. The noise-value for one point is generated based on a 3D-
Noise-Texture, its direction from center of the light-sphere and the
current time.

An other way that we use to indicate the progress in collecting a
light-sphere is the displacement of the light-sphere pieces. This

is done by assigning a displacement vector to each vertex of the
light-sphere model, which is scaled based on the current progress
in collecting it.

5.2 Particle System

The particle system is used to highlight gates and give the user feed-
back of the currently selected entity. It is implemented via two alter-
nating buffers used for transform feedback.The updating of particle
positions in done entirely on the GPU, for better performance. Each
emitter has an origin, a direction, a velocity, a lifetime value and a
buffer used to store information on its particles. The emitted par-
ticles are initialized with the values of their emitter, provided with
some random bias to provide a nice looking effect. The cone angle
in which particles are emitted, depending on the direction, can also
be adjusted.

5.3 Transparent Rainbow Path Rendering

The geometry of the rainbow path is generated on the fly when a
level is loaded. This allows for a dynamic creation of the path, as
the rainbow path is calculated based on a hierarchy of bézier curves.
To acquire a continuous rainbow color gradient, even over the bor-
ders of single curves, a global distance to the origin is calculated
for each (sub-)path and used for drawing.

To achieve correct transparency, all road segments have to be sorted.
The sorting is done based on the middle points of the road segments.
For correct transparency, the rainbow road has to be drawn at the
end of the rendering pipeline since the lighting is deferred, prior to
the post-processing.

6 Tools and Libraries

For the development of our game, we used the following external
tools and libraries.

Assimp Library used for the import of Collada files.

GLM Mathematical library

LodePNG Library for cross-platform image reading.

Blender Tool for mesh modeling, AO-baking and level design.
XCode IDE used for iPhone development.

CMake Cross-platform build system management.

7 Conclusion

The intended low entry barrier to our game allows casual users great
experiences. The use of warm colors and a peaceful natural envi-
ronment proved to be positively received. A working animation
system was implemented, but is currently not being used due to
time restrictions of the level development. Our use of collada files
as levels opens possibilities for simple development of further lev-
els. The full potential of our engine could not be used in our levels,
but many of our design decisions lead to positive results.

References

2015. Open asset import library. http://assimp.sourceforge.net/.
2015. Blender. http://www.blender.org.



